Catchment Solutions

Helping to meet high standards of environmental excellence & corporate responsibility

  • About
    • Our board
  • Our Team
    • Position Vacant
  • Projects
    • Projects – Fisheries
    • Projects – Rural Innovation
    • Projects – System Repair
    • Projects – Water Quality
  • Services
    • Water Quality Services
    • Systems Repair
    • Fisheries & Aquatic Ecosystems
    • Rural Production Innovation
    • Project Catalyst
  • Competencies
    • Environmental and landscape planning
    • Environmental operations
    • Environment policy and strategy development
    • Ecological system monitoring and reporting
    • Applied research, development and learning
  • Resources
  • News
  • Media
  • Contact

Overview of Biomass Energy Systems

October 14, 2015 by diana

By Salman Zafar

CanetracBiomass is a versatile energy source that can be used for production of heat, power, transport fuels and biomaterials, apart from making a significant contribution to climate change mitigation. Currently, biomass-driven combined heat and power, co-firing, and combustion plants provide reliable, efficient, and clean power and heat. Feedstock for biomass energy plants can include residues from agriculture, forestry, wood processing, and food processing industries, municipal solid wastes, industrial wastes and biomass produced from degraded and marginal lands.

The terms biomass energy, bioenergy and biofuels cover any energy products derived from plant or animal or organic material. The increasing interest in biomass energy and biofuels has been the result of the following associated benefits:

  • Potential to reduce GHG emissions.
  • Energy security benefits.
  • Substitution for diminishing global oil supplies.
  • Potential impacts on waste management strategy.
  • Capacity to convert a wide variety of wastes into clean energy.
  • Technological advancement in thermal and biochemical processes for waste-to-energy transformation.

Biomass can play the pivotal role in production of carbon-neutral fuels of high quality as well as providing feedstocks for various industries. This is a unique property of biomass compared to other renewable energies and which makes biomass a prime alternative to the use of fossil fuels. Performance of biomass-based systems for heat and power generation has been already proved in many situations on commercial as well as domestic scales.

Biomass energy systems have the potential to address many environmental issues, especially global warming and greenhouse gases emissions, and foster sustainable development among poor communities. Biomass fuel sources are readily available in rural and urban areas of all countries. Biomass-based industries can provide appreciable employment opportunities and promote biomass re-growth through sustainable land management practices.

The negative aspects of traditional biomass utilisation in developing countries can be mitigated by promotion of modern waste-to-energy technologies which provide solid, liquid and gaseous fuels as well as electricity as shown. Biomass wastes can be transformed into clean and efficient energy by biochemical as well as thermochemical technologies.

The most common technique for producing both heat and electrical energy from biomass wastes is direct combustion. Thermal efficiencies as high as 80 – 90% can be achieved by advanced gasification technology with greatly reduced atmospheric emissions. Combined heat and power (CHP) systems, ranging from small-scale technology to large grid-connected facilities, provide significantly higher efficiencies than systems that only generate electricity.  Biochemical processes, like anaerobic digestion and sanitary landfills, can also produce clean energy in the form of biogas and producer gas which can be converted to power and heat using a gas engine.

In addition, biomass wastes can also yield liquid fuels, such as cellulosic ethanol, which can be used to replace petroleum-based fuels. Cellulosic ethanol can be produced from grasses, wood chips and agricultural residues by biochemical route using heat, pressure, chemicals and enzymes to unlock the sugars in cellulosic biomass. Algal biomass is also emerging as a good source of energy because it can serve as natural source of oil, which conventional refineries can transform into jet fuel or diesel fuel.

  • Facebook
  • Twitter
  • RSS

Select a product

Water Quality Services Projects and

Logo for Water Quality Services, part of Catchment Solutions.

System Repair

Logo for Systems Repair Catchment Solutions.

Fisheries & Aquatic Ecosystems

Logo for Fisheries and Aquatic Ecosystems, part of Catchment Solutions.

Rural Production Innovation

Logo for Rural Production Innovation part of Catchment Solutions.

Search

Latest News

Harvesting Innovation in Sugarcane

Collinsdale Erosion Remediation Project

Rehabilitation of 15ha of gully erosion at Ogmore

Invitation to tender – Mt Fairview

Innovative fish habitat reef modules

Connecting estuaries to wetlands podcast

Rocky Dam Catchment Fishway Monitoring 2020

Clews Road Fishway Construction, Murray Creek

Bakers Creek Treatment Train Wetlands Fishway Construction

Landings Road Fishway

Contact

Suite 4, 85 Gordon Street
PO Box 815
Mackay QLD 4740

More

Copyright © 2021 Site By The DMA

  • Legal Notice and Disclaimer
  • Privacy Policy
  • Sitemap